首页> 外文OA文献 >Real-time Learning and Detection of 3D Texture-less Objects: A Scalable Approach
【2h】

Real-time Learning and Detection of 3D Texture-less Objects: A Scalable Approach

机译:实时学习和检测3D无纹理对象:可扩展方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a method for the learning and detection of multiple rigid texture-less 3Dobjects intended to operate at frame rate speeds for video input. The method is gearedfor fast and scalable learning and detection by combining tractable extraction of edgeletconstellations with library lookup based on rotation- and scale-invariant descriptors. Theapproach learns object views in real-time, and is generative - enabling more objects tobe learnt without the need for re-training. During testing, a random sample of edgeletconstellations is tested for the presence of known objects. We perform testing of singleand multi-object detection on a 30 objects dataset showing detections of any of themwithin milliseconds from the object’s visibility. The results show the scalability of theapproach and its framerate performance.
机译:我们提出了一种用于学习和检测旨在以视频输入的帧频速度运行的多个无纹理的3D刚性对象的方法。该方法通过结合边缘小星座的易提取提取与基于旋转不变和尺度不变描述符的库查找来实现快速和可扩展的学习和检测。该方法可实时学习对象视图,并且具有生成性-无需重新训练就可以学习更多对象。在测试过程中,将对边缘对象的随机样本进行测试以了解已知对象的存在。我们对30个对象数据集进行了单对象和多对象检测的测试,该数据集显示了从对象的可见性以毫秒为单位的检测到的任何对象。结果表明该方法的可扩展性及其帧速率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号